Extensions 1→N→G→Q→1 with N=C6 and Q=C22×Dic3

Direct product G=N×Q with N=C6 and Q=C22×Dic3
dρLabelID
Dic3×C22×C696Dic3xC2^2xC6288,1001

Semidirect products G=N:Q with N=C6 and Q=C22×Dic3
extensionφ:Q→Aut NdρLabelID
C61(C22×Dic3) = C22×S3×Dic3φ: C22×Dic3/C2×Dic3C2 ⊆ Aut C696C6:1(C2^2xDic3)288,969
C62(C22×Dic3) = C23×C3⋊Dic3φ: C22×Dic3/C22×C6C2 ⊆ Aut C6288C6:2(C2^2xDic3)288,1016

Non-split extensions G=N.Q with N=C6 and Q=C22×Dic3
extensionφ:Q→Aut NdρLabelID
C6.1(C22×Dic3) = C2×S3×C3⋊C8φ: C22×Dic3/C2×Dic3C2 ⊆ Aut C696C6.1(C2^2xDic3)288,460
C6.2(C22×Dic3) = S3×C4.Dic3φ: C22×Dic3/C2×Dic3C2 ⊆ Aut C6484C6.2(C2^2xDic3)288,461
C6.3(C22×Dic3) = D12.2Dic3φ: C22×Dic3/C2×Dic3C2 ⊆ Aut C6484C6.3(C2^2xDic3)288,462
C6.4(C22×Dic3) = D12.Dic3φ: C22×Dic3/C2×Dic3C2 ⊆ Aut C6484C6.4(C2^2xDic3)288,463
C6.5(C22×Dic3) = C2×D6.Dic3φ: C22×Dic3/C2×Dic3C2 ⊆ Aut C696C6.5(C2^2xDic3)288,467
C6.6(C22×Dic3) = C62.11C23φ: C22×Dic3/C2×Dic3C2 ⊆ Aut C696C6.6(C2^2xDic3)288,489
C6.7(C22×Dic3) = Dic3×Dic6φ: C22×Dic3/C2×Dic3C2 ⊆ Aut C696C6.7(C2^2xDic3)288,490
C6.8(C22×Dic3) = C62.13C23φ: C22×Dic3/C2×Dic3C2 ⊆ Aut C696C6.8(C2^2xDic3)288,491
C6.9(C22×Dic3) = C62.25C23φ: C22×Dic3/C2×Dic3C2 ⊆ Aut C696C6.9(C2^2xDic3)288,503
C6.10(C22×Dic3) = C4×S3×Dic3φ: C22×Dic3/C2×Dic3C2 ⊆ Aut C696C6.10(C2^2xDic3)288,523
C6.11(C22×Dic3) = S3×C4⋊Dic3φ: C22×Dic3/C2×Dic3C2 ⊆ Aut C696C6.11(C2^2xDic3)288,537
C6.12(C22×Dic3) = Dic3×D12φ: C22×Dic3/C2×Dic3C2 ⊆ Aut C696C6.12(C2^2xDic3)288,540
C6.13(C22×Dic3) = D12⋊Dic3φ: C22×Dic3/C2×Dic3C2 ⊆ Aut C696C6.13(C2^2xDic3)288,546
C6.14(C22×Dic3) = C2×Dic32φ: C22×Dic3/C2×Dic3C2 ⊆ Aut C696C6.14(C2^2xDic3)288,602
C6.15(C22×Dic3) = C62.97C23φ: C22×Dic3/C2×Dic3C2 ⊆ Aut C648C6.15(C2^2xDic3)288,603
C6.16(C22×Dic3) = C2×D6⋊Dic3φ: C22×Dic3/C2×Dic3C2 ⊆ Aut C696C6.16(C2^2xDic3)288,608
C6.17(C22×Dic3) = C2×Dic3⋊Dic3φ: C22×Dic3/C2×Dic3C2 ⊆ Aut C696C6.17(C2^2xDic3)288,613
C6.18(C22×Dic3) = S3×C6.D4φ: C22×Dic3/C2×Dic3C2 ⊆ Aut C648C6.18(C2^2xDic3)288,616
C6.19(C22×Dic3) = Dic3×C3⋊D4φ: C22×Dic3/C2×Dic3C2 ⊆ Aut C648C6.19(C2^2xDic3)288,620
C6.20(C22×Dic3) = C62.115C23φ: C22×Dic3/C2×Dic3C2 ⊆ Aut C648C6.20(C2^2xDic3)288,621
C6.21(C22×Dic3) = C22×C9⋊C8φ: C22×Dic3/C22×C6C2 ⊆ Aut C6288C6.21(C2^2xDic3)288,130
C6.22(C22×Dic3) = C2×C4.Dic9φ: C22×Dic3/C22×C6C2 ⊆ Aut C6144C6.22(C2^2xDic3)288,131
C6.23(C22×Dic3) = C2×C4×Dic9φ: C22×Dic3/C22×C6C2 ⊆ Aut C6288C6.23(C2^2xDic3)288,132
C6.24(C22×Dic3) = C2×C4⋊Dic9φ: C22×Dic3/C22×C6C2 ⊆ Aut C6288C6.24(C2^2xDic3)288,135
C6.25(C22×Dic3) = C23.26D18φ: C22×Dic3/C22×C6C2 ⊆ Aut C6144C6.25(C2^2xDic3)288,136
C6.26(C22×Dic3) = D4×Dic9φ: C22×Dic3/C22×C6C2 ⊆ Aut C6144C6.26(C2^2xDic3)288,144
C6.27(C22×Dic3) = Q8×Dic9φ: C22×Dic3/C22×C6C2 ⊆ Aut C6288C6.27(C2^2xDic3)288,155
C6.28(C22×Dic3) = D4.Dic9φ: C22×Dic3/C22×C6C2 ⊆ Aut C61444C6.28(C2^2xDic3)288,158
C6.29(C22×Dic3) = C2×C18.D4φ: C22×Dic3/C22×C6C2 ⊆ Aut C6144C6.29(C2^2xDic3)288,162
C6.30(C22×Dic3) = C23×Dic9φ: C22×Dic3/C22×C6C2 ⊆ Aut C6288C6.30(C2^2xDic3)288,365
C6.31(C22×Dic3) = C22×C324C8φ: C22×Dic3/C22×C6C2 ⊆ Aut C6288C6.31(C2^2xDic3)288,777
C6.32(C22×Dic3) = C2×C12.58D6φ: C22×Dic3/C22×C6C2 ⊆ Aut C6144C6.32(C2^2xDic3)288,778
C6.33(C22×Dic3) = C2×C4×C3⋊Dic3φ: C22×Dic3/C22×C6C2 ⊆ Aut C6288C6.33(C2^2xDic3)288,779
C6.34(C22×Dic3) = C2×C12⋊Dic3φ: C22×Dic3/C22×C6C2 ⊆ Aut C6288C6.34(C2^2xDic3)288,782
C6.35(C22×Dic3) = C62.247C23φ: C22×Dic3/C22×C6C2 ⊆ Aut C6144C6.35(C2^2xDic3)288,783
C6.36(C22×Dic3) = D4×C3⋊Dic3φ: C22×Dic3/C22×C6C2 ⊆ Aut C6144C6.36(C2^2xDic3)288,791
C6.37(C22×Dic3) = Q8×C3⋊Dic3φ: C22×Dic3/C22×C6C2 ⊆ Aut C6288C6.37(C2^2xDic3)288,802
C6.38(C22×Dic3) = D4.(C3⋊Dic3)φ: C22×Dic3/C22×C6C2 ⊆ Aut C6144C6.38(C2^2xDic3)288,805
C6.39(C22×Dic3) = C2×C625C4φ: C22×Dic3/C22×C6C2 ⊆ Aut C6144C6.39(C2^2xDic3)288,809
C6.40(C22×Dic3) = C2×C6×C3⋊C8central extension (φ=1)96C6.40(C2^2xDic3)288,691
C6.41(C22×Dic3) = C6×C4.Dic3central extension (φ=1)48C6.41(C2^2xDic3)288,692
C6.42(C22×Dic3) = Dic3×C2×C12central extension (φ=1)96C6.42(C2^2xDic3)288,693
C6.43(C22×Dic3) = C6×C4⋊Dic3central extension (φ=1)96C6.43(C2^2xDic3)288,696
C6.44(C22×Dic3) = C3×C23.26D6central extension (φ=1)48C6.44(C2^2xDic3)288,697
C6.45(C22×Dic3) = C3×D4×Dic3central extension (φ=1)48C6.45(C2^2xDic3)288,705
C6.46(C22×Dic3) = C3×Q8×Dic3central extension (φ=1)96C6.46(C2^2xDic3)288,716
C6.47(C22×Dic3) = C3×D4.Dic3central extension (φ=1)484C6.47(C2^2xDic3)288,719
C6.48(C22×Dic3) = C6×C6.D4central extension (φ=1)48C6.48(C2^2xDic3)288,723

׿
×
𝔽