extension | φ:Q→Aut N | d | ρ | Label | ID |
C6.1(C22×Dic3) = C2×S3×C3⋊C8 | φ: C22×Dic3/C2×Dic3 → C2 ⊆ Aut C6 | 96 | | C6.1(C2^2xDic3) | 288,460 |
C6.2(C22×Dic3) = S3×C4.Dic3 | φ: C22×Dic3/C2×Dic3 → C2 ⊆ Aut C6 | 48 | 4 | C6.2(C2^2xDic3) | 288,461 |
C6.3(C22×Dic3) = D12.2Dic3 | φ: C22×Dic3/C2×Dic3 → C2 ⊆ Aut C6 | 48 | 4 | C6.3(C2^2xDic3) | 288,462 |
C6.4(C22×Dic3) = D12.Dic3 | φ: C22×Dic3/C2×Dic3 → C2 ⊆ Aut C6 | 48 | 4 | C6.4(C2^2xDic3) | 288,463 |
C6.5(C22×Dic3) = C2×D6.Dic3 | φ: C22×Dic3/C2×Dic3 → C2 ⊆ Aut C6 | 96 | | C6.5(C2^2xDic3) | 288,467 |
C6.6(C22×Dic3) = C62.11C23 | φ: C22×Dic3/C2×Dic3 → C2 ⊆ Aut C6 | 96 | | C6.6(C2^2xDic3) | 288,489 |
C6.7(C22×Dic3) = Dic3×Dic6 | φ: C22×Dic3/C2×Dic3 → C2 ⊆ Aut C6 | 96 | | C6.7(C2^2xDic3) | 288,490 |
C6.8(C22×Dic3) = C62.13C23 | φ: C22×Dic3/C2×Dic3 → C2 ⊆ Aut C6 | 96 | | C6.8(C2^2xDic3) | 288,491 |
C6.9(C22×Dic3) = C62.25C23 | φ: C22×Dic3/C2×Dic3 → C2 ⊆ Aut C6 | 96 | | C6.9(C2^2xDic3) | 288,503 |
C6.10(C22×Dic3) = C4×S3×Dic3 | φ: C22×Dic3/C2×Dic3 → C2 ⊆ Aut C6 | 96 | | C6.10(C2^2xDic3) | 288,523 |
C6.11(C22×Dic3) = S3×C4⋊Dic3 | φ: C22×Dic3/C2×Dic3 → C2 ⊆ Aut C6 | 96 | | C6.11(C2^2xDic3) | 288,537 |
C6.12(C22×Dic3) = Dic3×D12 | φ: C22×Dic3/C2×Dic3 → C2 ⊆ Aut C6 | 96 | | C6.12(C2^2xDic3) | 288,540 |
C6.13(C22×Dic3) = D12⋊Dic3 | φ: C22×Dic3/C2×Dic3 → C2 ⊆ Aut C6 | 96 | | C6.13(C2^2xDic3) | 288,546 |
C6.14(C22×Dic3) = C2×Dic32 | φ: C22×Dic3/C2×Dic3 → C2 ⊆ Aut C6 | 96 | | C6.14(C2^2xDic3) | 288,602 |
C6.15(C22×Dic3) = C62.97C23 | φ: C22×Dic3/C2×Dic3 → C2 ⊆ Aut C6 | 48 | | C6.15(C2^2xDic3) | 288,603 |
C6.16(C22×Dic3) = C2×D6⋊Dic3 | φ: C22×Dic3/C2×Dic3 → C2 ⊆ Aut C6 | 96 | | C6.16(C2^2xDic3) | 288,608 |
C6.17(C22×Dic3) = C2×Dic3⋊Dic3 | φ: C22×Dic3/C2×Dic3 → C2 ⊆ Aut C6 | 96 | | C6.17(C2^2xDic3) | 288,613 |
C6.18(C22×Dic3) = S3×C6.D4 | φ: C22×Dic3/C2×Dic3 → C2 ⊆ Aut C6 | 48 | | C6.18(C2^2xDic3) | 288,616 |
C6.19(C22×Dic3) = Dic3×C3⋊D4 | φ: C22×Dic3/C2×Dic3 → C2 ⊆ Aut C6 | 48 | | C6.19(C2^2xDic3) | 288,620 |
C6.20(C22×Dic3) = C62.115C23 | φ: C22×Dic3/C2×Dic3 → C2 ⊆ Aut C6 | 48 | | C6.20(C2^2xDic3) | 288,621 |
C6.21(C22×Dic3) = C22×C9⋊C8 | φ: C22×Dic3/C22×C6 → C2 ⊆ Aut C6 | 288 | | C6.21(C2^2xDic3) | 288,130 |
C6.22(C22×Dic3) = C2×C4.Dic9 | φ: C22×Dic3/C22×C6 → C2 ⊆ Aut C6 | 144 | | C6.22(C2^2xDic3) | 288,131 |
C6.23(C22×Dic3) = C2×C4×Dic9 | φ: C22×Dic3/C22×C6 → C2 ⊆ Aut C6 | 288 | | C6.23(C2^2xDic3) | 288,132 |
C6.24(C22×Dic3) = C2×C4⋊Dic9 | φ: C22×Dic3/C22×C6 → C2 ⊆ Aut C6 | 288 | | C6.24(C2^2xDic3) | 288,135 |
C6.25(C22×Dic3) = C23.26D18 | φ: C22×Dic3/C22×C6 → C2 ⊆ Aut C6 | 144 | | C6.25(C2^2xDic3) | 288,136 |
C6.26(C22×Dic3) = D4×Dic9 | φ: C22×Dic3/C22×C6 → C2 ⊆ Aut C6 | 144 | | C6.26(C2^2xDic3) | 288,144 |
C6.27(C22×Dic3) = Q8×Dic9 | φ: C22×Dic3/C22×C6 → C2 ⊆ Aut C6 | 288 | | C6.27(C2^2xDic3) | 288,155 |
C6.28(C22×Dic3) = D4.Dic9 | φ: C22×Dic3/C22×C6 → C2 ⊆ Aut C6 | 144 | 4 | C6.28(C2^2xDic3) | 288,158 |
C6.29(C22×Dic3) = C2×C18.D4 | φ: C22×Dic3/C22×C6 → C2 ⊆ Aut C6 | 144 | | C6.29(C2^2xDic3) | 288,162 |
C6.30(C22×Dic3) = C23×Dic9 | φ: C22×Dic3/C22×C6 → C2 ⊆ Aut C6 | 288 | | C6.30(C2^2xDic3) | 288,365 |
C6.31(C22×Dic3) = C22×C32⋊4C8 | φ: C22×Dic3/C22×C6 → C2 ⊆ Aut C6 | 288 | | C6.31(C2^2xDic3) | 288,777 |
C6.32(C22×Dic3) = C2×C12.58D6 | φ: C22×Dic3/C22×C6 → C2 ⊆ Aut C6 | 144 | | C6.32(C2^2xDic3) | 288,778 |
C6.33(C22×Dic3) = C2×C4×C3⋊Dic3 | φ: C22×Dic3/C22×C6 → C2 ⊆ Aut C6 | 288 | | C6.33(C2^2xDic3) | 288,779 |
C6.34(C22×Dic3) = C2×C12⋊Dic3 | φ: C22×Dic3/C22×C6 → C2 ⊆ Aut C6 | 288 | | C6.34(C2^2xDic3) | 288,782 |
C6.35(C22×Dic3) = C62.247C23 | φ: C22×Dic3/C22×C6 → C2 ⊆ Aut C6 | 144 | | C6.35(C2^2xDic3) | 288,783 |
C6.36(C22×Dic3) = D4×C3⋊Dic3 | φ: C22×Dic3/C22×C6 → C2 ⊆ Aut C6 | 144 | | C6.36(C2^2xDic3) | 288,791 |
C6.37(C22×Dic3) = Q8×C3⋊Dic3 | φ: C22×Dic3/C22×C6 → C2 ⊆ Aut C6 | 288 | | C6.37(C2^2xDic3) | 288,802 |
C6.38(C22×Dic3) = D4.(C3⋊Dic3) | φ: C22×Dic3/C22×C6 → C2 ⊆ Aut C6 | 144 | | C6.38(C2^2xDic3) | 288,805 |
C6.39(C22×Dic3) = C2×C62⋊5C4 | φ: C22×Dic3/C22×C6 → C2 ⊆ Aut C6 | 144 | | C6.39(C2^2xDic3) | 288,809 |
C6.40(C22×Dic3) = C2×C6×C3⋊C8 | central extension (φ=1) | 96 | | C6.40(C2^2xDic3) | 288,691 |
C6.41(C22×Dic3) = C6×C4.Dic3 | central extension (φ=1) | 48 | | C6.41(C2^2xDic3) | 288,692 |
C6.42(C22×Dic3) = Dic3×C2×C12 | central extension (φ=1) | 96 | | C6.42(C2^2xDic3) | 288,693 |
C6.43(C22×Dic3) = C6×C4⋊Dic3 | central extension (φ=1) | 96 | | C6.43(C2^2xDic3) | 288,696 |
C6.44(C22×Dic3) = C3×C23.26D6 | central extension (φ=1) | 48 | | C6.44(C2^2xDic3) | 288,697 |
C6.45(C22×Dic3) = C3×D4×Dic3 | central extension (φ=1) | 48 | | C6.45(C2^2xDic3) | 288,705 |
C6.46(C22×Dic3) = C3×Q8×Dic3 | central extension (φ=1) | 96 | | C6.46(C2^2xDic3) | 288,716 |
C6.47(C22×Dic3) = C3×D4.Dic3 | central extension (φ=1) | 48 | 4 | C6.47(C2^2xDic3) | 288,719 |
C6.48(C22×Dic3) = C6×C6.D4 | central extension (φ=1) | 48 | | C6.48(C2^2xDic3) | 288,723 |